Как работает сенсорный экран. Часть 2

Как работает сенсорные экраны, или точнее говоря сенсоры емкостного и резистивного типа, мы рассмотрели в части 1 этой статьи. Теперь поговорим о принципах работы менее популярных на сегодняшний день сенсоров.

МАтричный сенсор

Матричные сенсоры работают по принципу резистивных, однако отличаются от первых максимально упрощенной конструкцией. На мембрану наносятся вертикальные проводящие полосы, на стекло – горизонтальные. Или наоборот. При давлении на определенную область, замыкаются две проводящие полосы и контроллеру достаточно легко вычислить координаты контакта.

Недостаток такой технологии виден невооруженным глазом – очень низкая точность, а следовательно и невозможность обеспечить высокую дискретность сенсора. Из-за этого некоторые элементы изображения могут не совпадать с расположением полос проводника, а следовательно нажатие на эту область может либо вызвать неправильное исполнение нужной функции либо вообще не сработать. Единственным достоинством этого типа сенсоров является их дешевизна, которая собственно говоря, и выплывает из простоты. Кроме этого матричные сенсоры не прихотливы в использовании.

Проекционно-емкостной сенсор

Проекционно-емкостные сенсорные экраны являются как бы разновидностью емкостных, однако работают немного по-другому. На внутреннюю сторону экрана наносится сетка электродов. При касании пальцем между соответствующим электродом и телом человека возникает электрическая система – эквивалент конденсатора. Контроллер сенсора подает импульс микротока и измеряет емкость образовавшегося конденсатора. В результате того что в момент касания одновременно задействованы несколько электродов, контроллеру достаточно просто вычислить точное место касания (по самой большой емкости).

Основные достоинства проекционно-емкостных сенсоров – это большая прозрачность всего дисплея (до 90 %), чрезвычайно широкий диапазон рабочих температур и долговечность. При использовании такого типа сенсора несущее стекло может достигать толщины 18 мм, что дает возможность делать ударопрочные дисплеи. К тому же сенсор устойчив к непроводящему загрязнению.

Сесор на поверхностно-акустических волнах

Сенсоры на поверхностно-акустических волнах – волнах, распространяющихся на поверхности твердого тела. Сенсор представляет собой стеклянную панель, по углам которой расположены пьезоэлектрические преобразователи. Суть работы такого сенсора в следующем. Пьезоэлектрические датчики генерируют и принимают акустические волны, которые распространяются между датчиками по поверхности дисплея. Если касания нет – электрический сигнал преобразуется в волны, а потом обратно в электрический сигнал. Если произошло касание часть энергии акустической волны поглотится пальцем, а следовательно не дойдет до датчика. Контроллер проанализирует полученный сигнал и посредством алгоритма вычислит место касания.

Достоинства таких сенсоров в том, что используя специальный алгоритм можно определять не только координаты касания, но и силу нажатия – дополнительная информационная составляющая. К тому же конечное устройство отображения (дисплей) имеет очень высокую прозрачность, поскольку на пути света нет полупрозрачных проводящих электродов. Однако сенсоры имеют и ряд недостатков. Во-первых, это очень сложная конструкция, а во-вторых – точности определения координат очень сильно мешают вибрации.

Инфракрасные сенсоры

Инфракрасные сенсорные экраны. Принцип их работы основан на использовании координатной сетки из инфракрасных лучей (излучатели и приемники света). Примерно тоже, что и в банковских хранилищах из художественных фильмов про шпионов и грабителей. При касании в определенной точке сенсора прерывается часть лучей, а контроллер по данным от оптических приемников определяет координаты контакта.

Основной недостаток таких сенсоров – очень критичное отношение к чистоте поверхности. Любое загрязнение может привести к полной его неработоспособности. Хотя из-за простоты конструкции этот тип сенсора используется в военных целях, и даже в некоторых мобильных телефонах.

Оптические сенсорные экраны являются логическим продолжением предыдущих. Инфракрасный свет используется в качестве информационной подсветки. Если на поверхности нет сторонних предметов – свет отражается и попадает в фотоприемник. Если произошло касание – часть лучей поглощается, а контроллер определяет координаты контакта.

Недостатком технологии является сложность конструкции в виду необходимости использования дополнительного светочувствительного слоя дисплея. К достоинствам можно отнести возможность достаточно точного определения материала, с помощью которого произведено касание.

Тензометрические и сенсорные экраны DST работают по принципу деформацииповерхностного слоя. Их точность достаточно низкая, но они прекрасно выдерживают механические воздействия, поэтому применяются в банкоматах, билетных автоматах и прочих публичных электронных устройствах.

Индукционные экраны основаны на принципе формирования электромагнитного поля под верхней частью сенсора. При касании специальным пером, меняется характеристика поля, а контроллер в свою очередь вычисляет точные координаты контакта. Применяются в художественных планшетных ПК самого высокого класса, поскольку обеспечивают большую точность определения координат.